OC Problem Set 7

Friday, June 12, 2015

Problem: Dynamics of a Laser Diode

DC Characteristics:

- a) Give the rate equations and explain the various terms.
- b) Draw the DC characteristic for optical output power and carrier concentration qualitatively for $Q \rightarrow 0$. Mark currents for threshold I_s and (qualitatively) transparency I_t . Give the reason why $n_T = const$ for $I > I_s$. How would the threshold value change if the mirror reflectivities $R_{1,2}$ are increased?

Small signal modulation:

c) What does the damping constant γ_r depend on, and how can it be manipulated?

Large signal modulation:

- d) Explain where the time delay t_d arises from when turning a laser on $(I_{off} = 0, I_{on} > I_s)$, cf. Fig. 3.24.
- e) (Optional:) In part d), the laser is controlled by a current source. Could a voltage control reduce the time delay t_d during turn-on procedure?
- f) Explain what is meant when referring to relaxation oscillations. Where is the maximum of the photon number located at with respect to the value of the carrier concentration n_T ? Give the reason.
- g) How can the time delay be avoided, and how can the relaxation oscillation be mitigated?
- h) Explain the term amplitude-phase coupling, and explain where it arises from.

For questions and suggestions on the OC tutorial please contact:

Stefan Wolf, Bldg. 30.10, Room 1.23, Phone: 0721/608-47173, <u>s.wolf@kit.edu</u> Wladick Hartmann, Room 2.23, Phone: 0721/608-48954, <u>wladislaw.hartmann@kit.edu</u>